

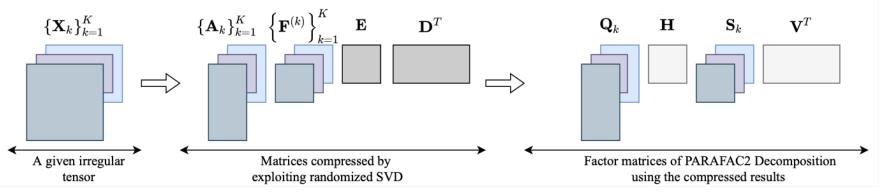
DPar2: Fast and Scalable PARAFAC2 Decomposition for Irregular Dense Tensors

ICDE 2022

Jun-Gi Jang and U Kang
Data Mining Lab
Dept. of CSE
Seoul National University

Overview

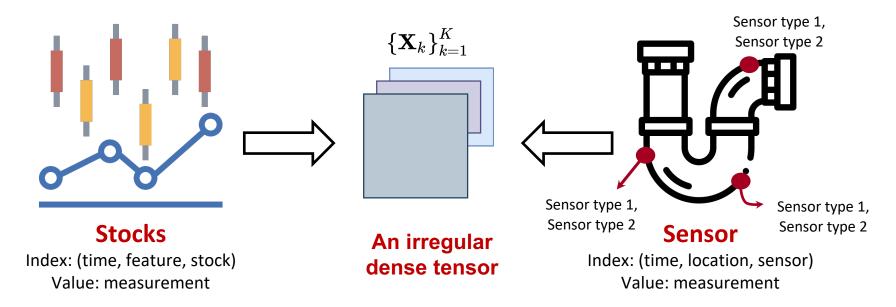
- Q. Given an irregular dense tensor, how can we efficiently analyze the tensor?
 - Irregular tensor: a collection of matrices whose columns have the same size and rows have different sizes from each other
- A. DPar2, a fast and scalable tensor decomposition method, efficiently analyzes the irregular tensor



- Introduction
 - Proposed Method
 - Experiments
 - Conclusion

Irregular Dense Tensors

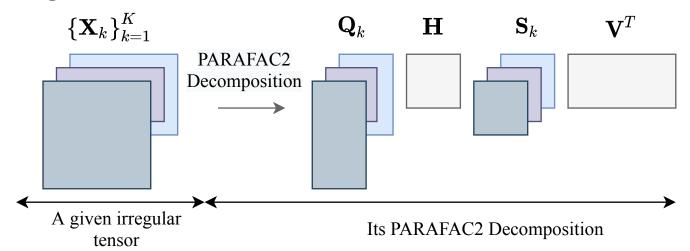
- Several real-world data are represented as irregular dense tensors
 - A collection of matrices whose columns have the same size and rows have different sizes from each other



ICDE 2022 Kuala Lumpur Malaysia

PARAFAC2 Decomposition

- How can we analyze an irregular dense tensor?
- PARAFAC2 Decomposition
 - A fundamental tool to analyze irregular tensors
 - Recently, it has been re-popularized for analysis of electronic health records (EHR) data represented as an irregular tensor

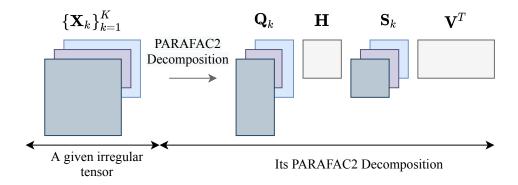


Jun-Gi Jang (SNU)

PARAFAC2 Decomposition

- **Given** an irregular tensor $\{X_k\}_{k=1}^K$, rank R
 - Slice matrix $\mathbf{X}_k \in \mathbb{R}^{I_k \times R}$
- **Obtain** obtain factor matrices $\mathbf{Q}_k \in \mathbb{R}^{I_k \times R}$, $\mathbf{H} \in \mathbb{R}^{I_k \times R}$, $\mathbf{S}_k \in \mathbb{R}^{R \times R}$, $\mathbf{V} \in \mathbb{R}^{J \times R}$ for k = 1, ..., K
- Objective function

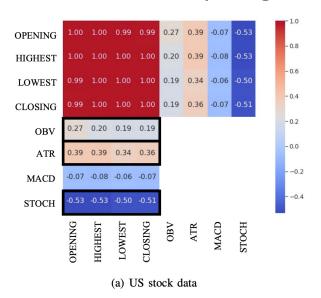
$$\min_{\mathbf{Q}_k, \mathbf{H}, \mathbf{S}_k, \mathbf{V}} \sum_{k=1}^K \|\mathbf{X}_k - \mathbf{Q}_k \mathbf{H} \mathbf{S}_k \mathbf{V}^T\|_F^2$$



Application

Several applications for PARAFAC2 decomposition

- Dimensionality reduction, anomaly detection, trend analysis, and phenotype discovery
- For example, given a stock data (time, feature, stock)



Q: MSFT (a) Similarity based Result

Rank	Stock Name	Sector
1	Adobe	Technology
2	Amazon.com	Consumer Cyclical
3	Apple	Technology
4	Moody's	Financial Services
5	Intuit	Technology
6	ANSYS	Technology
7	Synopsys	Technology
8	Alphabet	Communication Services
9	ServiceNow	Technology
10	EPAM Systems	Technology

Feature analysis

Similarity search

Alternating Least Square

- ALS (Alternating Least Square) is widely used for obtaining factor matrices of PARAFAC2
 Decomposition
 - Iteratively updates a factor matrix of a mode while fixing all factor matrices of other modes
 - (Heavy computational costs) Require computations with a given tensor at each iteration
 - For example, ALS needs to compute $\mathbf{X}_k \mathbf{V} \mathbf{S}_k \mathbf{H}$ for all k at each iteration $\mathbf{X}_k \in \mathbb{R}^{I_k \times J} \quad \mathbf{V} \mathbf{S}_k \mathbf{H} \in \mathbb{R}^{J \times R}$
 - □ Its computational cost is $O(\sum_{k=1}^{K} I_k JR)$ proportional to the size of an irregular tensor

Limitation of Previous Works

Limitations of previous works

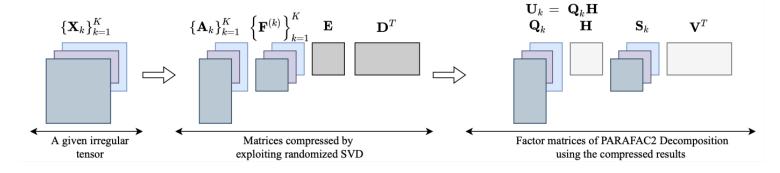
- They fail to handle an irregular dense tensor, efficiently
 - Each iteration requires computations involved with an irregular tensor
- There remains a need for fully employing multicore parallelism

We need to make PARAFAC2 decomposition **faster and more scalable**, to analyze large-scale irregular dense tensors

- Introduction
- Proposed Method
 - Experiments
 - Conclusion

Proposed Method

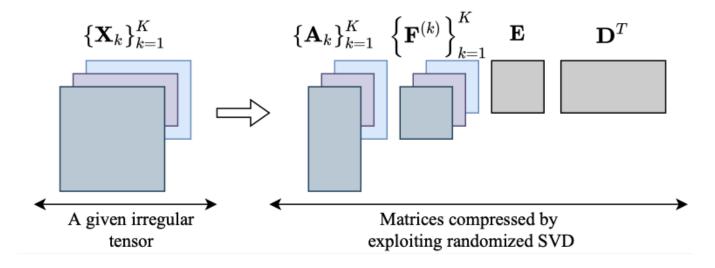
- We propose **DPar2** (**D**ense **PAR**AFAC**2** Decomposition)
 - A fast and scalable PARAFAC2 decomposition method for irregular dense tensors



- (Idea 1) Compressing an irregular tensor using randomized SVD (Singular Value Decomposition)
- (Idea 2) Careful reordering of computations with the compression results
 - Exploiting properties of operations and matrices
- (Idea 3) Careful distribution of work between threads by considering various lengths of matrices

Compression

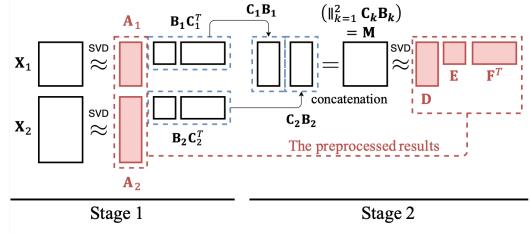
- Compressing an irregular tensor before iterations
 - The result is much smaller than an input irregular tensor



 The compression is performed once before iterations, and only the compression results are used at iterations

Compression

- Compressing an irregular tensor using Randomized SVD
 - Randomized SVD (Singular Value Decomposition) efficiently compresses matrices with low errors
 - It efficiently computes $\mathbf{X} \approx \mathbf{U}\mathbf{S}\mathbf{V}^T$
- There are two compression stage
 - Stage 1 compress each slice matrix using randomized SVD
 - Stage 2 further compress the intermediate data from the first stage



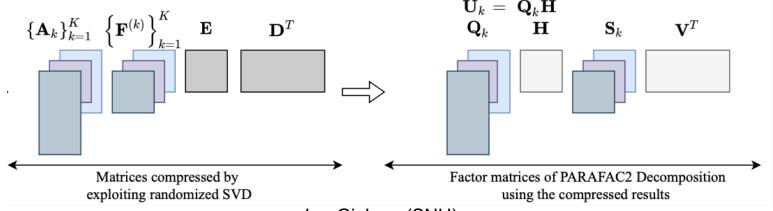
Compression

Details

- Stage 1 compress each slice matrix using randomized SVD
 - □ For all k, compute $\mathbf{X}_k \approx \mathbf{A}_k \mathbf{B}_k \mathbf{C}_k^T$
- Stage 2 further compress the intermediate data from the first stage
 - Construct a matrix $\mathbf{M} = ||_{k=1}^K \mathbf{C}_k \mathbf{B}_k$ by horizontally concatenating $\mathbf{C}_k \mathbf{B}_k$
 - □ Then, compute $\mathbf{M} \approx \mathbf{DEF}^T$
- The final output of the compression is $\mathbf{A}_k \mathbf{F}^{(k)} \mathbf{E} \mathbf{D}^T \approx \mathbf{X}_k$
 - $\mathbf{A}_k \in \mathbb{R}^{I_k \times R}$ and $\mathbf{F}^{(k)} \in \mathbb{R}^{R \times R}$ are generated from each slice matrix
 - Only one $\mathbf{E} \in \mathbb{R}^{R \times R}$ and $\mathbf{D} \in \mathbb{R}^{J \times R}$ are generated across all slice matrices

Due to the two-stage compression, we **efficiently** obtain the compression results much **smaller** than an input tensor

- Update factor matrices by exploiting the compression results
 - (Naïve approach) would update factor matrices after reconstruction, but it requires high computational costs and space costs
- (Idea) Careful reordering of computations with the compression results



Update Procedure of DPar2

Input: $\mathbf{A}_k \mathbf{F}^{(k)} \mathbf{E} \mathbf{D}^T (\approx \mathbf{X}_k)$ for

k = 1, ..., K, target rank R

Output: Q_k , H, S_k , V for

$$k = 1, ..., K$$

• Update Q_k

- Update S_k
- Update V

- Update Q_k using the compression results
- Naïve Computation (High Cost)
 - Reconstruct slice matrices from the compression results
 - Compute \mathbf{Q}_k using the reconstructed one
- Our computation (Low Cost)
 - Improve efficiency by avoiding reconstruction and redundant computations for \mathbf{A}_k
 - Exploit the property of $\mathbf{A}_k \in \mathbb{R}^{I_k \times J}$
 - \mathbf{A}_k is a column orthogonal matrix, i.e., $\mathbf{A}_k^T \mathbf{A}_k = \mathbf{I}$

Update Procedure of DPar2

Input: $\mathbf{A}_k \mathbf{F}^{(k)} \mathbf{E} \mathbf{D}^T (\approx \mathbf{X}_k)$ for

k = 1, ..., K, target rank R

Output: Q_k , H, S_k , V for

$$k = 1, ..., K$$

- Update \mathbf{Q}_k
- Update H

Update V

- Use small factorized matrices (e.g., \mathbf{A}_k , $\mathbf{F}^{(k)}$, \mathbf{E} , \mathbf{D})
 - They are much smaller than an input tensor
- Carefully reordering of computations with the compression results

With these ideas, we reduce the computational costs and avoid generating large intermediate data

Update Procedure of DPar2

Input: $\mathbf{A}_k \mathbf{F}^{(k)} \mathbf{E} \mathbf{D}^T (\approx \mathbf{X}_k)$ for

k = 1, ..., K, target rank R

Output: Q_k , H, S_k , V for

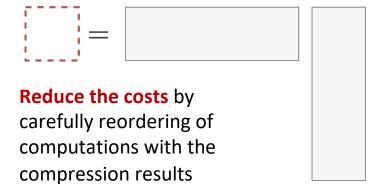
$$k = 1, ..., K$$

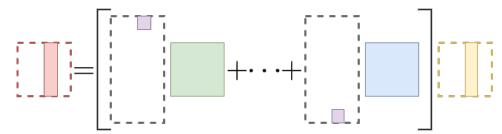
- Update \mathbf{Q}_k
- Update H

Update V

• Update H, S_k , V

Naïve computation with large matrices

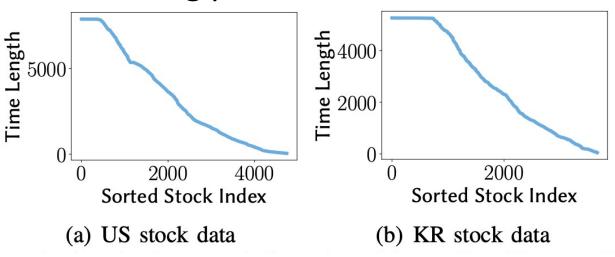




Our computation with small matrices

Multi-core Parallelism

- Given an irregular tensor, the number of rows of slice matrices is different
- For example, stocks have different time lengths due to listing periods

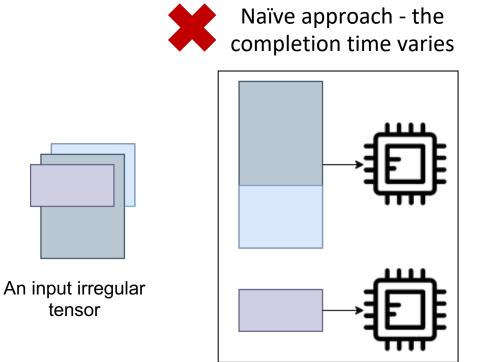


- The length of the temporal dimension of input slices
 - We sort the lengths in descending order

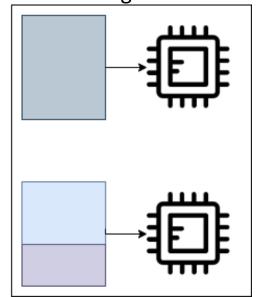
No method considers this difference for parallelism

Multi-core Parallelism

- Careful distribution of work between threads by considering various lengths of matrices
 - □ Computational costs of handling a matrix are proportional to its size



Distribute matrices fairly across each thread considering their size



- Introduction
- Proposed Method

- Experiments
 - Conclusion

Experimental Questions

- Q1. (Performance) How quickly and accurately does DPar2 perform PARAFAC2 decomposition compared to other methods?
- Q2. (Scalability) How well does DPar2 scale up with respect to tensor size and target rank? How much does the number of threads affect the running time of DPar2?
- Q3. (Discovery) What can we discover from real-world tensors using DPar2?

Dataset

Dataset

DESCRIPTION OF REAL-WORLD TENSOR DATASETS.

Dataset	Max Dim. I_k	Dim. J	Dim. K	Summary
FMA ¹ [26]	704	2,049	7,997	music
Urban ² [27]	174	2,049	8,455	urban sound
US Stock ³	7,883	88	4,742	stock
Korea Stock ⁴ [3]	5,270	88	3,664	stock
Activity ⁵ [28], [29]	553	570	320	video feature
Action ⁵ [28], [29]	936	570	567	video feature
Traffic ⁶ [30]	2,033	96	1,084	traffic
PEMS-SF ⁷	963	144	440	traffic

- \blacksquare Each slice matrix of an irregular tensor has different I_k
- J is the size of the common axis
 - The column size of slice matrices
- K is the number of slice matrices in an irregular tensor

Experimental Setting

Competitors

- 3 existing PARAFAC2 decomposition methods for irregular tensors
 - PARAFAC2-ALS: PARAFAC2 decomposition based on ALS approach
 - RD-ALS: PARAFAC2 decomposition which preprocesses a given irregular tensor
 - SPARTAN: fast and scalable PARAFAC2 decomposition for irregular sparse tensors

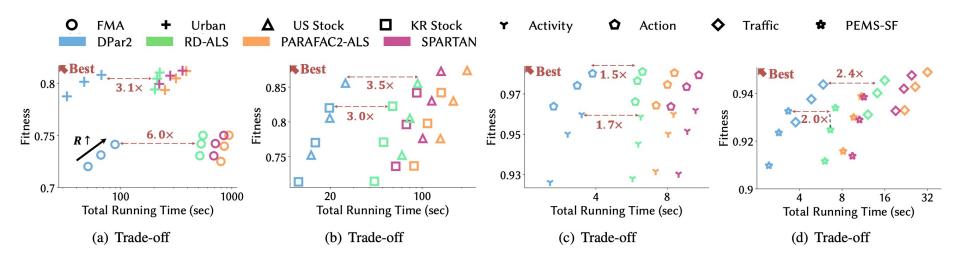
Metric

$$\quad \quad \text{Fitness: } 1 - \left(\frac{\sum_{k=1}^{K} \left\| \mathbf{X}_k - \widetilde{\mathbf{X}}_k \right\|_F}{\sum_{k=1}^{K} \left\| \mathbf{X}_k \right\|_F} \right)$$

 Fitness close to 1 indicates that a model approximates a given input tensor well

Q1. Performance Trade-off

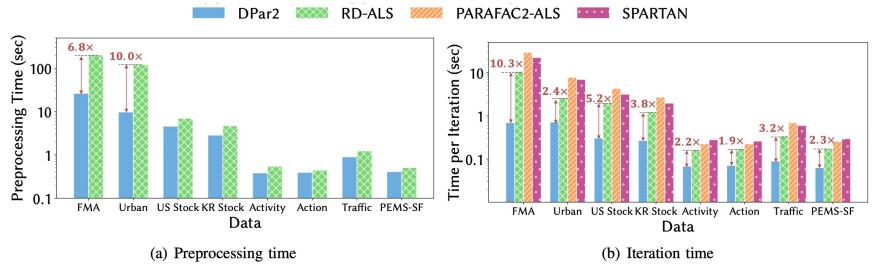
■ The upper-left region indicates better performance



DPar2 outperforms the competitors, giving up to $6 \times$ faster than competitors while having comparable fitness

Q1. Performance Running Time

Measure preprocessing time and iteration time

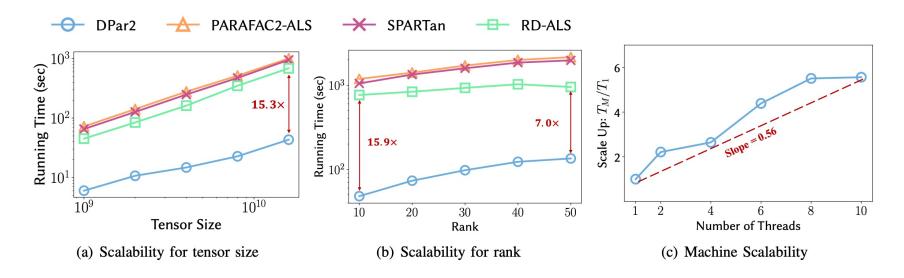


- Preprocessing time of Dpar2 is faster than RD-ALS which has preprocessing step for an irregular tensor
- Iteration time of DPar2 is **up to 10.3**× **faster** than competitors due to small compressed data

ICDE 2022

Q2. Scalability

Measure scalability on synthetic irregular tensors



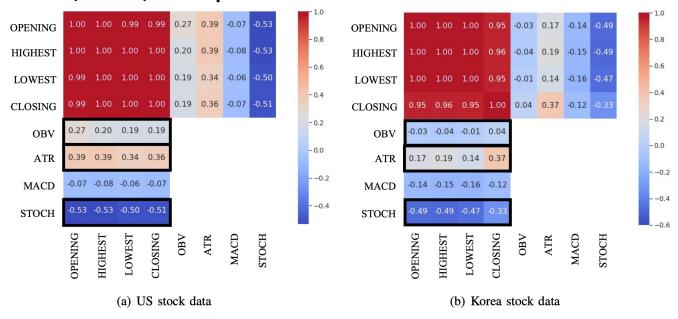
- DPar2 is more scalable than other PARAFAC2 decomposition methods in terms of both tensor size and rank
- DPar2 gives near-linear machine scalability

Q3. Discovery

- Given Korean stock and US stock datasets in the form of (time, features, stock), we compare the results between the two datasets
- Perform DPar2 for Korea stock and US stock datasets, respectively
- 2. For each dataset, compute Pearson Correlation Coefficient (PCC) between V(i,:) which are a factor vector of a feature (e.g., opening price, trading volume, and technical indicators)
- 3. Visualize the correlations
 - For effective visualization, we pick 4 price features and 4 representative technical indicators
 - 4 price features: the opening, the closing, the highest, and the lowest prices
 - 4 representative technical indicators: OBV, ATR, MACD, and STOCH

Q3. Discovery

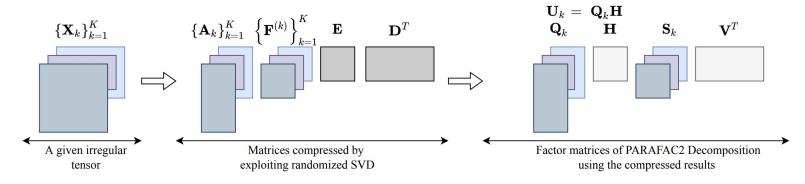
Due to the difference between the two markets in terms of market size, market stability, tax, investment behavior, etc., the patterns are different



 With DPar2, we efficiently analyze real-world irregular dense tensors

- Introduction
- Proposed Method
- Experiments
- Conclusion

 (Algorithm) DPar2 is a fast and scalable PARAFAC2 decomposition method for irregular dense tensors



- (Experiment) DPar2 outperforms the previous PARAFAC2 decomposition methods on irregular dense tensors
- (Discovery) With DPar2, we find interesting patterns in real-world irregular tensors

Thank you!

https://datalab.snu.ac.kr/dpar2

Details

Update Procedure of DPar2

Input: $\mathbf{A}_k \mathbf{F}^{(k)} \mathbf{E} \mathbf{D}^T (\approx \mathbf{X}_k)$ for

k = 1, ..., K, target rank R

Output: Q_k , H, S_k , V for

$$k = 1, ..., K$$

- Update Q_k
- lacksquare Construct $oldsymbol{y}$
- Update H
- Update \mathbf{S}_k
- Update **V**

- Update $Q_k \leftarrow \mathbf{Z}_k' \mathbf{P}_k'^T$ using the compression results
- Naïve Computation (High Cost)
 - □ Compute $\mathbf{A}_{k}\mathbf{F}^{(k)}\mathbf{E}\mathbf{D}^{T}\mathbf{V}\mathbf{S}_{k}\mathbf{H} \in \mathbb{R}^{I_{k}\times R}$
 - $Z'_k \Sigma'_k {\mathbf{P}'_k}^T \leftarrow {\mathbf{A}_k} {\mathbf{F}^{(k)}} {\mathbf{E}} {\mathbf{D}}^T {\mathbf{V}} {\mathbf{S}_k} {\mathbf{H}} \in \mathbb{R}^{I_k \times R} \text{ by SVD}$
- Our computation (Low Cost)
 - □ Compute $\mathbf{F}^{(k)}\mathbf{E}\mathbf{D}^T\mathbf{V}\mathbf{S}_k\mathbf{H} \in \mathbb{R}^{R\times R}$
 - $\mathbf{Z}_{k} \mathbf{\Sigma}_{k} \mathbf{P}_{k}^{T} \leftarrow \mathbf{F}^{(k)} \mathbf{E} \mathbf{D}^{T} \mathbf{V} \mathbf{S}_{k} \mathbf{H}$ by SVD

Since $\mathbf{A}_k \in \mathbb{R}^{I_k \times J}$ is a column orthogonal matrix, we avoid redundant computations for $\mathbf{A}_k \Rightarrow$ reduce computational costs